Twitter Sentiment Analysis using Python

[ad_1]

import re

import tweepy

from tweepy import OAuthHandler

from textblob import TextBlob

 

class TwitterClient(object):

    

    

    

    def __init__(self):

        

        

        

        

        consumer_key = 'XXXXXXXXXXXXXXXXXXXXXXXX'

        consumer_secret = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX'

        access_token = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX'

        access_token_secret = 'XXXXXXXXXXXXXXXXXXXXXXXXX'

 

        

        try:

            

            self.auth = OAuthHandler(consumer_key, consumer_secret)

            

            self.auth.set_access_token(access_token, access_token_secret)

            

            self.api = tweepy.API(self.auth)

        except:

            print("Error: Authentication Failed")

 

    def clean_tweet(self, tweet):

        

        

        

        

        return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])

                                    |(\w+:\/\/\S+)", " ", tweet).split())

 

    def get_tweet_sentiment(self, tweet):

        

        

        

        

        

        analysis = TextBlob(self.clean_tweet(tweet))

        

        if analysis.sentiment.polarity > 0:

            return 'positive'

        elif analysis.sentiment.polarity == 0:

            return 'neutral'

        else:

            return 'negative'

 

    def get_tweets(self, query, count = 10):

        

        

        

        

        tweets = []

 

        try:

            

            fetched_tweets = self.api.search(q = query, count = count)

 

            

            for tweet in fetched_tweets:

                

                parsed_tweet = {}

 

                

                parsed_tweet['text'] = tweet.text

                

                parsed_tweet['sentiment'] = self.get_tweet_sentiment(tweet.text)

 

                

                if tweet.retweet_count > 0:

                    

                    if parsed_tweet not in tweets:

                        tweets.append(parsed_tweet)

                else:

                    tweets.append(parsed_tweet)

 

            

            return tweets

 

        except tweepy.TweepError as e:

            

            print("Error : " + str(e))

 

def main():

    

    api = TwitterClient()

    

    tweets = api.get_tweets(query = 'Donald Trump', count = 200)

 

    

    ptweets = [tweet for tweet in tweets if tweet['sentiment'] == 'positive']

    

    print("Positive tweets percentage: {} %".format(100*len(ptweets)/len(tweets)))

    

    ntweets = [tweet for tweet in tweets if tweet['sentiment'] == 'negative']

    

    print("Negative tweets percentage: {} %".format(100*len(ntweets)/len(tweets)))

    

    print("Neutral tweets percentage: {} % \

        ".format(100*(len(tweets) -(len( ntweets )+len( ptweets)))/len(tweets)))

 

    

    print("\n\nPositive tweets:")

    for tweet in ptweets[:10]:

        print(tweet['text'])

 

    

    print("\n\nNegative tweets:")

    for tweet in ntweets[:10]:

        print(tweet['text'])

 

if __name__ == "__main__":

    

    main()

[ad_2]
Source link

About the author

Opera Jobs

Opera Jobs is a one-stop destination for job seekers and employers alike. This innovative job website was created with the goal of connecting talented individuals with exciting employment opportunities in various industries. Opera Jobs boasts a user-friendly interface that allows job seekers to easily search for jobs based on their preferences, skills, and experience. Employers can also post job listings and seamlessly connect with qualified candidates through the platform. With a wide range of job categories and locations available, Opera Jobs is the perfect platform for both job seekers and employers to find their ideal match in the competitive job market.

Leave a Comment